EFECTOS DEL HALOPERIDOL Y NUEVAS BUTIROFENONAS DE SÍNTESIS SOBRE LAS CONTRACCIONES INDUCIDAS POR DOPAMINA EN CONDUCTO DEFERENTE DE RATA. ESTUDIO DEL HALOPERIDOL FRENTE A DOPAMINA Y NORADRENALINA

Loza M., Orallo F., Cadavid I., Verde I., Gato A., Calleja J.M.


INTRODUCCION

El objetivo inicial de este trabajo fue el de estudiar los efectos de dos potenciales agentes neurolépticos (el p-clorobenzoxato de pseudotropanol (I) y el p-F-fenil 2-4-o metoxifenilpiperazinitilcíclopentilcetona (II) frente a las contracciones inducidas por dopamina en conducto deferente aislado de rata. Pero, aunque está clara la presencia de dopamina (DA) y noradrenalina (NA) (1), al revisar la bibliografía encontramos datos contradictorios sobre la existencia de receptores postsinápticos específicos para la dopamina en esta preparación. Así, por una parte algunos autores (2) proponen que la DA activa una población de receptores postsinápticos que se diferencian de los activados por la NA, basándose en el hecho de que encontraron valores de pA₂ distintos para la NA y para la DA utilizando varios antagonistas.

Por otro lado, otros autores (3, 4) proponen que tanto la NA como la DA activan una población homogénea de receptores en vaso deferente de rata. Para demostrarlo utilizan una solución de Krebs especial a la que añaden inhibidores de la recaptación, bloqueantes de receptores beta-adrenérgicos, y además modifican el tiempo de preincubación del antagonista.

En nuestro trabajo estudiamos el efecto del haloperidol frente a las contracciones inducidas por NA y DA en ausencia y en presencia de inhibidores de la recaptación neuronal (cocaína), extraneuronal (estradiol), y de un bloqueante beta adrenérgico (propranolol); y el de los dos potenciales neurolépticos (compuestos I y II) frente a las contracciones inducidas por dopamina en condiciones normales.

MATERIAL Y MÉTODO.

Se han utilizado ratas Sprague-Dawley macho de 250 a 350 g sacrificadas por traumatismo retrocervical y arteriotomía carótidea. Tras su extracción y limpieza, el conducto deferente fue montado, sometido a Ig de tensión, en una copa de tejidos de 10 ml conteniendo solución de Krebs a 37°C borbujeadas con carbógeno. Las contracciones isotónicas del órgano se registraron sobre papel ahumado por medio de una palanca de inscripción lateral (1:10).

La composición de las soluciones de Krebs utilizadas fue:

Krebs normal (composición mM: NaCl, 118,07; KCl, 4; CaCl₂;2H₂O, 2,5; MgSO₄.7H₂O, 1,2; KH₂PO₄, 1,2; NaHCO₃, 25; Glucosa, 11)

Krebs modificado (conteniendo además: propranolol, 1 μM; cocaína 10 μM; y estradiol 10 μM).

Después de un período de estabilización de 45 minutos, durante los cuales la solución nutritiva fue renovada cada 5, se obtuvieron las curvas dosis-respuesta por el procedimiento de dosis acumulativas, añadiendo al líquido de perfusión de la copa concentraciones crecientes del agonista correspondiente sin lavado intermedio de la preparación. Después de registrar dos curvas de control (con agonista sólo) similares, dejando 30 a 45 minutos entre dosis, se introdujo en la copa una determinada concentración del antagonista correspondiente 5 minutos, cuando se utilizó Krebs normal, y 30 minutos en el caso del Krebs modificado.

Expresión de resultados.

Los resultados obtenidos se expresan como porcentajes de la contracción máxima producida por el agonista.

Los valores de pD₂ de los agonistas fueron calculados según el método de Van Rossum (5)

Los valores de pA₂ de los antagonistas se calcularon según el método de Arunkshana y Schild (6), es decir, a partir de la intersección con el eje OX de las rectas obtenidas por regresión lineal (método de los mínimos cuadrados) de los puntos resultantes al representar el log de la dosis de antagonista frente al log (razón de dosis - 1), siendo la razón de dosis la relación entre el 50% de la respuesta máxima producida por el agonista en presencia y ausencia de cada dosis del antagonista.
Cuando procedió, el contraste estadístico de los resultados se realizó mediante t-test de Student; los valores de \( p < 0.05 \) fueron considerados como estadísticamente significativos.

**Fármacos y reactivos.**

Bitartrato de (-)-noradrenalina (Sigma), Clorhidrato de 3-hidroxitiramina (Sigma), Clorhidrato de cocaína (Abelló), Clorhidrato de (±)-propranolol (Ici-Farma), β-estradiol (Schering), haloperidol (Latino).

Las disoluciones de noradrenalina y dopamina se prepararon diariamente por diluciones sucesivas con agua desionizada de una solución concentrada (100 mM), la cual se obtiene reponiendo el volumen líquido de soluciones previamente liofilizadas con bisulfito sódico al 1% como antioxidante.

Las disoluciones de haloperidol, compuestos I y II, propranolol y cocaína se prepararon en agua desionizada pocos minutos antes de su utilización.

El estradiol se preparó diariamente disuelto en etanol, la cantidad de etanol en la copa fue siempre menor de 0,2 %.

**RESULTADOS**

**Krebs normal: agonistas.**

La preparación utilizada carece de movimientos espontáneos. La NA y la DA producen contracciones dosis dependientes que pueden llegar a ser rítmicas a dosis elevadas, especialmente la DA. En una misma preparación ambos agonistas producen la misma respuesta máxima.

Los valores de los pD₂ aparecen en la tabla I.

**Krebs normal: antagonistas.**

Ni el haloperidol ni los compuestos ensayados ejercen en le conducto deferente efecto significativo alguno. Los correspondientes valores de pA₂ aparecen en la tabla II, junto con algunos parámetros de las rectas de regresión a partir de las cuales se obtienen dichos valores. La respuesta máxima obtenida para los agonistas, en presencia de haloperidol, aparece potenciada con concentraciones elevadas de DA y NA (Fig 1).

**Krebs especial: agonistas.**

En este medio, la NA y la DA provocaron contracciones de la preparación que pudieron llegar a ser rítmicas desde concentraciones bajas de ambas catecolaminas. Las curvas concentración-efecto se reprodujeron cuando se dejaron transcurrir 45 minutos entre ellas.

Los valores de los pD₂ correspondientes aparecen en la tabla I.

**Krebs especial: antagonista.**

El haloperidol no ejerció tampoco efecto alguno en este medio, pero desplazó hacia la derecha las curvas de NA y DA. Los valores de los pA₂ (Tabla II), frente a ambas catecolaminas, no presentan diferencias significativas.

En este medio disminuye la potenciación de la respuesta máxima obtenida para los agonistas a concentraciones elevadas.

**DISCUSION.**

Por los resultados obtenidos en el presente trabajo proponemos que la NA y la DA activan la misma población de receptores postsinápticos en conducto deferente de rata ya que los valores de pA₂ para el haloperidol frente a ambos agonistas no presentan diferencias significativas ni en el Krebs normal utilizado por Simon y Van Maenen (2) ni tampoco en el Krebs modificado propuesto por Leedman y Pennefather (3). Se confirma la existencia de un antagonismo competitivo para el haloperidol: existe una relación lineal entre el log (razón de dosis-1) y el log de la concentración de antagonista, y en ningún caso las pendientes de las rectas de regresión a partir de las cuales se obtienen los valores de los pA₂ son significativamente diferentes del valor teórico 1 aunque se desvían más de este valor cuando se utiliza Krebs normal, esta mayor desviación puede ser debida a que el haloperidol en Krebs normal potencia la respuesta máxima producida por DA y NA cuando se trabaja con concentraciones elevadas de ambas catecolaminas. Cuando se utilizó el Krebs modificado, que lleva inhibidores de
la recapitación, se redujo considerablemente la potenciación. Es probable que estén implicados mecanismos de recapitación neuronal, como proponen algunos autores (7).

En una misma preparación tanto la DA como la NA producen igual respuesta máxima, lo que hace suponer que ambas catecolaminas poseen la misma actividad intrínseca. Comparando los valores de pD₂, parece que la NA tanto en el Krebs normal como en modificado, tiene mayor afinidad por sus receptores que la DA. Idénticos resultados aparecen descritos en la bibliografía (8, 9). El pD₂ de la NA en el conducto deferente de rata varía sensiblemente cuando al Krebs normal es sustituido por Krebs especial, mientras que el de la DA prácticamente no se modifica. Es muy probable que ello sea debido a que la NA se recaptó en esta preparación con mayor intensidad que la DA, aunque no puede descartarse una interacción con receptores beta-adrenérgicos.

En todo caso los pA₂ para el haloperidol frente a ambas catecolaminas no presentaron diferencias significativas en ninguno de los dos medios utilizados, por lo que hemos comparado en medio Krebs normal el efecto del fármaco y el de los compuestos I y II frente a dopamina. Los pA₂ calculados para estos compuestos, así como las pendientes de las rectas de regresión, parecen indicar una posible actividad neuroléptica para el compuesto II, ya que antagoniza competitivamente a la DA (lo que concuerda con los resultados obtenidos in vivo, datos no publicados), y la descartan para el II, quizás porque la presencia de un ciclopentano resta facilidad a la molécula para acoplarla al receptor.

Agradecimientos.

Deseamos expresar nuestro agradecimiento a los Laboratorios ICI-Farma y Shering por su amabilidad al suministrarnos el propranolol y el beta-estradiol.

BIBLIOGRAFIA
### TABLA I

RESULTADOS DEL CALCULO DEL pD$_2$ PARA DOPAMINA Y NORADRENALINA EN KREBS NORMAL Y MODIFICADO

<table>
<thead>
<tr>
<th>Agonistas</th>
<th>Krebs normal</th>
<th>krebs modificado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopamina</td>
<td>4.54 ± 0.11</td>
<td>4.75 ± 0.09</td>
</tr>
<tr>
<td>Noradrenalina</td>
<td>5.32 ± 0.17</td>
<td>6.68 ± 0.09</td>
</tr>
</tbody>
</table>

### TABLA II

PARAMETROS DE LAS RECTAS DE REREGRISION: LOG (RACION DE DOSIS-1) / LOG (ANTAGONISTA) Y VALORES DE LOS pA$_2$ OBTENIDOS A PARTIR DE ELLAS.

<table>
<thead>
<tr>
<th>Medio</th>
<th>Agonista</th>
<th>pA$_2$ (x ± es)</th>
<th>Ordenada en el origen</th>
<th>Pendiente</th>
<th>coeficiente correlacion</th>
</tr>
</thead>
<tbody>
<tr>
<td>KREBS</td>
<td>Noradrenalina</td>
<td>6.88 ± 0.14</td>
<td>5.54</td>
<td>0.81</td>
<td>0.9998</td>
</tr>
<tr>
<td>NORMAL</td>
<td>Dopamina (haloperidol)</td>
<td>7.36 ± 0.26</td>
<td>6.46</td>
<td>0.88</td>
<td>0.9901</td>
</tr>
<tr>
<td>KREBS</td>
<td>Noradrenalina</td>
<td>7.28 ± 0.22</td>
<td>6.84</td>
<td>0.94</td>
<td>0.9987</td>
</tr>
<tr>
<td>ESPECIAL</td>
<td>Dopamina (haloperidol)</td>
<td>7.65 ± 0.31</td>
<td>7.52</td>
<td>0.98</td>
<td>0.9951</td>
</tr>
<tr>
<td>KREBS</td>
<td>Dopamina (compuesto I)</td>
<td>5.08 ± 0.42</td>
<td>7.78</td>
<td>1.35</td>
<td>0.9952</td>
</tr>
<tr>
<td>NORMAL</td>
<td>Dopamina (compuesto II)</td>
<td>2.54 ± 0.34</td>
<td>1.44</td>
<td>3.6</td>
<td>0.9927</td>
</tr>
</tbody>
</table>